Diophantine equations via cluster transformations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Diophantine Equations via Lucas-Lehmer Theory

In this work we look at an approach to solving Pell’s equation using continued fractions and fundamental units in real quadratic orders. We demonstrate that there is an underlying general approach using Lucas-Lehmer methods for solving Pell and other quadratic Diophantine equations that is often overlooked in the literature. Mathematics Subject Classification: Primary: 11D09; 11A55; Secondary: ...

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

Diophantine Approximations, Diophantine Equations, Transcendence and Applications

This article centres around the contributions of the author and therefore, it is confined to topics where the author has worked. Between these topics there are connections and we explain them by a result of Liouville in 1844 that for an algebraic number α of degree n ≥ 2, there exists c > 0 depending only on α such that | α− p q |> c qn for all rational numbers p q with q > 0. This inequality i...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Ternary Diophantine Equations via Galois Representations and Modular Forms

In this paper, we develop techniques for solving ternary Diophantine equations of the shape Axn + Byn = Cz2 , based upon the theory of Galois representations and modular forms. We subsequently utilize these methods to completely solve such equations for various choices of the parameters A, B and C . We conclude with an application of our results to certain classical polynomial-exponential equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2016

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2016.04.033